WEEKLY TEST TYJ TEST - 11 RAJ PUR ROAD SOLUTION Date 30-06-2019

[PHYSICS]

1. \quad Average speed $=\frac{\text { total distance covered }}{\text { total time taken }}$
$v_{a v .}=\frac{\frac{x}{2}+\frac{x}{2}}{\frac{x / 2}{40}+\frac{x / 2}{60}}=\frac{x}{\left(\frac{x}{80}+\frac{x}{120}\right)}$
$=\frac{80 \times 120}{(120+80)}=48 \mathrm{~km} / \mathrm{h}$
2. $200=u \times 2-(1 / 2) a(2)^{2}$ or $u-a=100$
$200+220=u(2+4)-(1 / 2)(2+4)^{2} a$
or $u-3 a=70$
Solving eqns. (i) and (ii), we get; $a=15 \mathrm{~cm} / \mathrm{s}^{2}$ and $u=115 \mathrm{~cm} / \mathrm{s}$.
Further, $\mathrm{v}=\mathrm{u}-$ at $=115-15 \times 7=10 \mathrm{~cm} / \mathrm{sec}$.
3. When a body slides on an inclined plane, component of weight along the plane produces an acceleration
$\mathrm{a}=\frac{\mathrm{mg} \sin \theta}{\mathrm{m}}=\mathrm{g} \sin \theta=$ constt.
If s be the length of the inclined plane, then
$\mathrm{s}=0+\frac{1}{2} \mathrm{at}^{2}=\frac{1}{2} \mathrm{~g} \sin \theta \times \mathrm{t}^{2}$
$\therefore \quad \frac{\mathrm{s}^{\prime}}{\mathrm{s}}=\frac{\mathrm{t}^{\prime 2}}{\mathrm{t}^{2}}$ or $\frac{\mathrm{s}}{\mathrm{s}^{\prime}}=\frac{\mathrm{t}^{2}}{\mathrm{t}^{\prime 2}}$
Given $t=4 \sec$ and $s^{\prime}=\frac{s}{4}$
$\therefore \quad \mathrm{t}^{\prime}=\mathrm{t} \sqrt{\frac{\mathrm{s}^{\prime}}{\mathrm{s}}}=4 \sqrt{\frac{\mathrm{~s}}{4 \mathrm{~s}}}=\frac{4}{2}=2 \mathrm{sec}$
4. Given that; $\mathrm{a}=3 \mathrm{t}+4$ or $\frac{\mathrm{dv}}{\mathrm{dt}}=3 \mathrm{t}+4$
$\therefore \quad \int_{0}^{v} d v=\int_{0}^{t}(3 t+4) d t$ or $v=\frac{3}{2} t^{2}+4 t$
$\mathrm{v}=\frac{3}{2}(2)^{2}+4(2)=14 \mathrm{~ms}^{-1}$
5. For first body :
$\frac{1}{2} \mathrm{gt}^{2}=176.4$ or $\mathrm{t}=\sqrt{\frac{176.4 \times 2}{10}}$
or $t=5.9 \mathrm{~s}$
For second body : $\mathrm{t}=3.9 \mathrm{~s}$
$\mathrm{u}(3.9)+\frac{1}{2} \mathrm{~g}(3.9)^{2}=176.4$
$3.9 \mathrm{u}+\frac{10}{2}(3.9)^{2}=176.4$
or $u=24.5 \mathrm{~m} / \mathrm{s}$
6. The resultant velocity of the boat and river is $1.0 \mathrm{~km} / 0.25 \mathrm{~h}$
$=4 \mathrm{~km} / \mathrm{h}$.
Velocity of the rive $=\sqrt{5^{2}-4^{2}}=3 \mathrm{~km} / \mathrm{h}$
7. Let he be the height of the tower.

Using $v^{2}-u^{2}=2 a s$, we get;
Here, $u=u, a=-g, s=-h$ and $v=-3 u$ (upward direction $+v e$)
$\therefore \quad 9 u^{2}-u^{2}=2 g h$ or $h=4 u^{2} / g$
8. $t=\sqrt{\frac{2 h}{g}}$
$s=10 \times \frac{t}{2}-\frac{1}{2} g \times \frac{t^{2}}{4}=5 \sqrt{\frac{2 h}{g}}-\frac{g}{8} \frac{2 h}{g}$
$v^{2}-u^{2}=2 g h$ or $100=2 g h$ or $10=\sqrt{2 g h}$
$\mathrm{s}=\sqrt{\frac{2 \mathrm{gh} \times 2 \mathrm{~h}}{4 \times \mathrm{g}}}-\frac{\mathrm{h}}{4}=\mathrm{h}-\frac{\mathrm{h}}{4}=\frac{3 \mathrm{~h}}{4}$
9. $t=\frac{1}{u+v}=\frac{1}{\frac{l}{t_{1}}+\frac{l}{t_{2}}}$
or $\frac{1}{t}+\frac{1}{t_{1}}+\frac{1}{t_{2}} \quad$ or $\quad t=\frac{t_{1} t_{2}}{\left(t_{1}+t_{2}\right)}$
10. For first body :
$v^{2}=u^{2}+2 g h \quad$ or
$(3)^{2}=0+2 \times 9.8 \times h$
or $\quad h=\frac{(3)^{2}}{2 \times 9.8}=0.46 \mathrm{~m}$
For second body :
$v^{2}=(4)^{2}+2 \times 9.8 \times 0.46$
$\therefore \quad v=\sqrt{(4)^{2}+(2 \times 9.8 \times 0.46)}=5 \mathrm{~m} / \mathrm{s}$
Given $y=0$
Distance travelled in 10 s ,
$S_{1}=\frac{1}{2} a \times 10^{2}=50 a$
Distance travelled in 20 s ,
$S_{2}=\frac{1}{2} a \times 20^{2}=200 a$
$\therefore \quad \mathrm{S}_{2}=4 \mathrm{~S}_{1}$
12. During the first 5 seconds of the motion, the acceleration is - ve and during the next 5 seconds it becomes positive. (Example : a stone thrown upwards, coming to momentary rest at the highest point). The distance covered remains same during the two intervals of time.
13. Gain in angular $\mathrm{KE}=$ loss in PE

If $I=$ length of the pole, moment of inertial of the pole about the edge $=M\left[\frac{1^{2}}{12}+\frac{I^{2}}{4}\right]=\frac{\mathrm{Ml}^{2}}{3}$
Loss in potential energy $=\frac{\mathrm{Mgl}}{2}$
Gain in angular $\mathrm{KE}=\frac{1}{2} \left\lvert\, \omega^{2}=\frac{1}{2} \times \frac{\mathrm{MI}^{2}}{3} \times \omega^{2}\right.$
$\therefore \quad \frac{1}{2} \frac{\mathrm{MI}}{3} \omega^{2}=\frac{\mathrm{Mg} \mid}{2} \quad$ or $\quad(\mid \omega)^{2}=3 \mathrm{gl}$
or $\quad \mid \omega=v=\sqrt{3 g \mid}$
$=\sqrt{3 \times 10 \times 30}=30 \mathrm{~ms}^{-1}$
14. Let the velocity of the scooter be $\mathrm{v} \mathrm{ms}^{-1}$. Then $(\mathrm{v}-10) 100=100$ or $\mathrm{v}=20 \mathrm{~ms}^{-1}$
15. Let x be the distance between the particles after t second. Then
$x=v t-\frac{1}{2} a t^{2}$
For x to be maximum,
$\frac{d x}{d t}=0$
or $\quad v-a t=0$
or $t=\frac{v}{a}$
Putting this value in eqn. (i), we get;

$$
x=v\left(\frac{v}{a}\right)-\frac{1}{2} a\left(\frac{v}{a}\right)^{2}=\frac{v^{2}}{2 a}
$$

[CHEMISTRY]

16. These are isoelectronic ions and the size decreases with increase in nuclear charge as $\mathrm{S}^{2-}>\mathrm{Cl}^{-}>\mathrm{K}^{+}>$ Ca^{2+} (all have 20 electrons)
17.
18.
19.
20. The configuration corresponds to that of Cl , which has the highest negative electron gain enthalpy.
21. All physical and chemical properties of elements are periodic function of atomic number-Modern Periodic Law.
22. Electronic configuration reveals that the p-orbital of the element is not complete. Therefore, it is a p-block element. Moreover, the atomic number of the element is $33(\mathrm{As})$. Therefore, it is a metalloid
23. $117=[R n] 5 f^{14}, 6 d^{10}, 7 s^{2} 7 p^{5}$
24. Electronic configuration of Cu is $1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2} 3 p^{6}, 4 s^{1}, 3 d^{10}$ and electronic configuration of $C u^{2+}$ is $1 s^{2}$, $2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{6}, 3 d^{9}$. Hence, the given configuration represents metallic cation.
25.
26. The given element belongs to third period whose atomic number is $=15$. Below this element in the periodic table should belong to $4^{\text {th }}$ period. Fourth period contains 18 elements. Thus atomic number of this element is $15+18=33$.
27. The electronic configuration of M is
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{5}$
Thus M belongs to halogen family ($n s^{2} n p^{5}$)
28. Radius of isoelectronic species

$$
\propto \frac{1}{\text { oxidation number }}
$$

$$
\xrightarrow{\mathrm{O}^{2-},} \quad \mathrm{F}^{-}, \quad \mathrm{Na}^{+}, \quad \mathrm{Mg}^{2+},
$$

- oxidation order number in increasing
- radius in decreasing order

Thus radius of Ne should be more than F^{-}but less than Na^{+}i.e., in between 1.34 and 0.95°
29.
30. All the electron belong to d-Block. For d-block elements electron is removed first from $n s$ than from ($n-1$) d-orbitals.
${ }_{24} \mathrm{Cr}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 s^{2} 3 p^{6} 4 s^{1} 4 d^{5}$
${ }_{24} \mathrm{Cr}^{2+}=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{4}$

Four unpaired electrons
${ }_{26} \mathrm{Fe}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}$
${ }^{26} e^{2+}=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6}$

$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow	\uparrow

${ }_{27} \mathrm{CO}=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{7}$
${ }_{27} \mathrm{CO}^{2+}=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{7}$

$\uparrow \downarrow \mid \uparrow \downarrow$	\uparrow	\uparrow	\uparrow

Three unpaired electrons
${ }_{28} \mathrm{Ni}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 p^{6} 3 \mathrm{~s}^{2} 3 p^{6} 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{8}$
${ }_{28} \mathrm{Ni}^{2+}=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8}$

| $\uparrow \downarrow\|\uparrow \downarrow \downarrow\| \uparrow$ | \uparrow |
| :---: | :---: | :---: |

Two unpaired electrons

